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Computational Thinking: A Blueprint for Modern Education 

 

A discourse on the general agreement of the modern scientific community on what Computational 

Thinking is, as well as how it can be generalized to the K-12 level curriculum. 

 

Abstract 

 

 Computational thinking is the thought process of applying the fundamentals of computer science 

across all disciplines. In computational thinking, a student would approach any problem the way she 

would approach coding and programming problems, then expand the solution to the field of her choice, 

including the natural sciences, humanities, and even everyday situations such as waiting in lines or 

packing bags. However, despite the increasing awareness regarding the importance of computational 

thinking, the scientific community has yet to agree on a clear definition of what this abstract concept is, 

much less how it can take on a more concrete form in the shape of actual programs and curricula. 

This paper will distill existing resources and current research to delve into computational thinking 

and its applications. In addition to delineating what computational thinking has meant over time, this 

paper will provide an insight into its current direction, and research efforts to materialize the concept. 

Furthermore, by exploring different methods that have been undertaken by various computer scientists 

and educators, this paper will explain how computational thinking can be taught to students as a 

fundamental concept during their developmentally critical periods and enable it to become truly 

ubiquitous for all. 

 

History 

 

Seymour Papert  

 

 Jeannette Wing’s 2006 paper Computational Thinking is widely regarded to be the starting point 

of modern research with regards to the subject of the paper’s namesake. However, it must be noted that 

Seymour Papert, the co-inventor of the programming language Logo, was an initial pioneer of this field 

way back in the 1960s (Professor Seymour Papert), when personal computers had yet to be invented, 

much less distributed to the general population.  

 Papert’s contributions are noteworthy in that he was the first person who foresaw the vast 

potential that computational thinking, as opposed to computers, would have on the field of education. For 

him, computers were means to a greater goal, a platform on which students would be able to absorb 
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thought processes, mathematics, and computational thinking. As such, he argued that children must be 

steered towards the active use of computers from a young age, for pre-teen exposure to computers would 

be critical in computer familiarization, just as how early age exposure was crucial in fully mastering 

foreign languages.  

Unfortunately, because personal computers had not been widely distributed until the late 90’s, a 

lot of Papert’s work had to be diverted to advocating the widespread use of computers in classrooms – a 

concept now known as universal computation (Papert, The Children's Machine: Rethinking School in the 

Age of the Computer). Whereas computers in their various shapes and sizes are so indispensable to the 

everyday lives of people today, it was a luxury that very few could afford back when Papert had 

conducted his research. And while computational thinking is a concept that is certainly distinct from – 

almost independent of – treating computers as physical machines, it is undeniable that preaching active 

education of computational thinking is quite challenging when students are not familiar with computers to 

begin with.   

 More important than Papert’s efforts towards the dissemination and early exposure to computers 

is the fact that as a pioneer in the field of education, Papert was convinced that computers could be used 

as an effective medium to teach what he considered to be the most important concepts – learning and 

thinking. The language that he co-developed, Logo, was the result of his belief that computers could be 

used to visualize geometric concepts and facilitate the understanding of algorithms – a process that he 

referred to as “body-syntonic reasoning”.  (Papert, Mindstorms). With simple commands on a GUI 

(graphic user interface), the students would be able to move a small robot called the turtle, through which 

they would have an enhanced understanding of mathematics by envisioning themselves as the turtles on 

screen. Using a mix of turtle commands (ex: forward, back, left, right), math operations (ex: sum, 

difference, product, quotient, remainder, trigonometric functions), boolean operations (ex: less, greater, 

equal, and, or, not), and control structures (ex: if, repeat), the students were able to create a wide range of 

geometric shapes, ranging from the most rudimentary ones such as triangles and circles to complex ones 

including cubes, floral patterns, and infinitely branching-out trees (DiSessa and Abelson, Turtle 

Geometry).  

 

Jeannette Wing 

 

 While early researchers such as Papert or Alan Perlis are credited with pioneering the field of 

computational thinking, it is Jeannette Wing who invigorated the research community and gave new life 

to an otherwise outdated – and somewhat forgotten – concept. Her paper, Computational Thinking, was a 

wake-up call to not only the scientific community but to the general population with regards to the 
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importance of computer science, especially in the wakes of the dot-com bubble bust of the early 2000s. A 

computer scientist herself, Wing considered computer science to be a key component of modern 

education, not because of its contributions to software development and engineering, but because of its 

contributions to the thought processes of children. Just as how reading, writing, and mathematics 

composed of the three R’s of modern education, she vouched for the inclusion of Algorithms (‘Rithms) as 

the fourth R that would supplement the existing pillars of reading, writing (‘Riting), and arithmetic 

(‘Rithmetic).  

 Now that universal computation, which Papert had so strongly advocated, was something that 

modern educators could take for granted, Wing sought to build on that concept and make the 

fundamentals of computer science something that even non-majors could learn from. Computational 

thinking does not aim to make humans think like computers; rather, it is a way of problem solving (Wing, 

Computational Thinking). The very concepts that are used to solve software design problems, such as 

simulation, parallel processing, abstraction, and decomposition, could be used to determine the fastest 

way to rotate restaurant tables or optimize the number of supermarket check-out lines. Even better, the 

same concepts could be used for even the seemingly most mundane, everyday acts such as planning 

groceries, because that is how ubiquitous computational thinking is. To put it in her own words, 

computational thinking is for everyone, everywhere (Wing, Computational Thinking).  

 10 years after her groundbreaking article was published, much progress had been made, most 

notably with respect to the skyrocketing interest in computer science – the highest level since the dot-com 

bubble burst (Wing, Microsoft Research Blog). Due to increased funding in computer science education, 

many countries have started to include computer science in their basic K-12 curricula. Even outside of 

normal school settings, many non-profit organizations – most notably code.org – took off with the 

initiative of increasing awareness and interest in computer science, especially within populations that had 

previously been considered as minorities in the STEM field, such as women and underrepresented 

ethnicities (Partovi).  

While Wing has had a huge impact on laying out the definition and framework for what 

computational thinking is, she has not been an active pioneer when it comes to implementing concrete 

versions of CT curricula. Nevertheless, she has presented important research questions that have yet to be 

answered, such as how to best harness the advent of ubiquitous computation, and when/where certain 

concepts should be taught – for example, when is the best time to introduce recursion to students? (Wing, 

Microsoft Research Blog) And as academia, industry, and government work towards the common goal of 

making computational thinking a truly universal education concept, the blueprints laid out by the very 

person who revitalized the concept will be key to future endeavors.  
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Definition of CT 

 

Scientific Community 

 

 Grover and Pea put it best when they summed up computational thinking in a single phrase: CT’s 

essence is thinking like a computer scientist when confronted with a problem (Grover and Pea). The 

beauty of this definition is that it embodies the very objective of computational thinking, which is to make 

the fundamentals of computer science available for all disciplines and even everyday life – thus the 

generic term “problem”.  The details to this approach have been further clarified by Alfred Aho, who 

stated that computational thinking is the thought process involved in formulating problems so that their 

solutions can be represented as computational steps and algorithms (Aho) (Grover and Pea).  

Many others, such as the Royal Society, National Science Foundation(NSF)/College Board, 

Computer Science Teachers Association (CSTA), and the International Society for Technology in 

Education (ISTE), have offered their perspectives on how computational thinking should be defined 

(Grover and Pea). These include explanations that cover the seven big ideas of computing (Snyder), the 

operational definitions of computational thinking (Barr and Stephenson), and the importance of 

recognizing aspects of computation in the world that surround us, as well as applying tools and techniques 

from computer science to understand natural and artificial systems/processes (The Royal Society).  

  

Personal Opinion 

 

 While multitudes of different definitions exist, the one put forth by Grover and Pea captures the 

essence of what computational thinking is and should be, in that it emphasizes the problem-solving 

process, which is the single most important aspect of CT. Perlis, Papert, and Wing have all argued that 

computational thinking is a modern literacy that is as important as reading, writing, and arithmetic. The 

fact that CT is considered as the fourth pillar of education shows how CT is not just an end goal by itself; 

rather, it is the means to facilitate everyday decisions, improve students’ learning capabilities, and 

advance research across all disciplines, including the non-STEM fields. 

While people may not be familiar with terms like abstraction, modularizing, backtracking, or 

concurrency, they act upon such concepts in everyday life so naturally that they can almost be perceived 

as a part of subconscious human behavior. As such, computational thinking is also a process of theorizing 

and formalizing an already widespread concept, one that has been around for decades, if not centuries. 

Wing argues that a student packing her bag for school is prefetching and caching, that a child looking for 

her lost items is backtracking, and that standing in supermarket lines is multi-server system performance 
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(Wing, Computational Thinking). And while she may be taking a huge and rather generalized logical step, 

her point that such ideas are already ingrained into people’s behaviors is a very valid one. Despite the 

majority of the population not having even heard of what it is, computational thinking is already very 

much a part of everyday life.  

  But as general as CT is, the fact that modern schools face a severe lack of qualified instructors 

and curricula is still an outstanding issue. As such, researchers in recent years have now been shifting 

their focus from defining what computational thinking is to implementing computational thinking through 

various forms of curricula, both in and out of classroom settings. Due to how widespread the underlying 

concepts of computational thinking are in our society, the issue is less about formalizing what 

computational thinking is, and more about the methodologies that are used to educate students on CT-

related concepts. 

When it comes to training students to adapt to computational thinking processes, Andrea 

DiSessa’s prescient observation of computational literacy plays an important role in providing the 

guidelines for future research (Grover and Pea). DiSessa separates computational thinking into two main 

aspects: the material side, which includes the programming tools and environments that provide hands-on 

experience to students, and the social side, which covers the thought processes that are behind 

computational thinking (DiSessa). This division is important, as the material aspect of CT is very 

dependent on external factors, such as the availability of computers or the internet, while the social aspect 

places more emphasis on the content that is taught through various channels – sometimes even forgoing 

the use of computers altogether, most notably by the pioneering efforts of CS Unplugged (CS Education 

Research Group, University of Canterbury).  

The following sections will introduce currently ongoing research in tools and curricula used to 

introduce CT to K-12 students, as well as future directions that CT research could take in the coming 

years.  

  

 

Current Applications 

 

Tools 

 

Building on Alan Perlis’ belief that everyone should learn to program as part of a liberal 

education (A. Perlis), Mark Guzdial explored research projects that are being conducted to make 

computational thinking a 21st century literacy for all (Guzdial).  Most notably, he examined the 
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relationship between modern programming languages and students’ understanding of basic computer 

science concepts by introducing a research carried out by Lance A. Miller.  

Miller had discovered that object-oriented programming (OOP), the backbone of most modern 

programming languages such as Java, Python, and C++, was not something that non-computing students 

could intuitively understand (Miller). OOP has many advantages, including code reuse/recycling, 

encapsulation, design benefits, and software maintenance (Zoski and Salvage). However, the tradeoff of 

having such features is that intuition is somewhat sacrificed to make room for additional functionality. 

Many non-computing students have a hard time grasping the idea of classes and instances, much less 

advanced concepts such as inheritance and polymorphism, which are key components of object-oriented 

languages. 

Moreover, Miller learned that control structures like the if-else statement were another point of 

difference between the major and non-major students, as non-computing students often entirely ignored 

the else- part of the control flow. For them, in the situation where the if-condition was not satisfied, the 

next obvious step of action would be to just move on to the next block of code. He notes that it is “easier 

for the novices trying to read those programs if the conditions for each clause’s execution are explicit” 

(Guzdial), which is unfortunately not the case in most modern languages.   

These findings came to play significant roles in the revamping of modern computer science 

education. Scratch and Alice, two of the most popular tools/languages that are currently being used for K-

12 computer science, are constructed to be event-based languages as opposed to object-oriented. And 

while these tools are inherently devoid of some of the more advanced features that are found in more 

conventional programming languages, they are surprisingly flexible, as is evident in the vast array of 

different user-created projects that can be found in the Scratch online community, ranging from an 

obstacle-based game with three different levels to a program in which the main character moves in 

synchronized motion with the background music (Brennan and Resnick).  

The holy grail of these entry-level programming tools and languages is to have a low floor, high 

ceiling, and wide walls. Because abstraction is one of the harder concepts to grasp in computer science, 

many of these languages feature characters and items that anyone can recognize, as opposed to 

amorphous classes and instances. By constructing commands for these characters to execute, such as 

traversing a certain path or interacting with other characters, students are introduced to the concept of 

algorithms, which is just a step-by-step instruction that leads to the desired result.  

One of the goals of CT is to help students understand how to think programmatically without 

burdening them with esoteric computer code syntax.  For example, a layperson would have a hard time 

understanding the for-loop syntax of Java or C++ code; this is why many modern Initial Learning 

Environments (ILE’s) have graphic drag-and-drop functionalities that are further supported by text-box 
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entries that users can use to type in variables. This is a much easier way for students to learn the basics of 

programming, especially considering how many of these students are still in their developmental stages of 

learning and therefore respond better to visual stimuli. Moreover, these tools are designed so that even the 

most inexperienced students can understand how the program works almost intuitively; this means 

replacing formal control structures such as the for-loop with simple statements, like repeat-N-times.  

Since each completed command is visualized on the screen in a user-friendly format, the student receives 

immediate feedback and reinforces her understanding of the underlying structures and algorithms, just as 

Papert’s Logo was designed to be. 

 On the other end of the spectrum, these languages also need to let more experienced users be able 

to implement advanced features that are well beyond simple movements and commands. The Logo 

language was very intuitive and had a low entry bar in terms of difficulty, but it was lacking in that there 

was only so much that the user could do outside of drawing various geometric shapes. Modern tools 

enable the user to do so much more – for example, the Alice language creates a 3-D environment 

complete with a plot and multiple characters, so that the user is introduced to programming concepts 

while exploring a fictional storyboard (Werner, Campe and Denner, Children Learning Computer Science 

Concepts via Alice Game-Programming).  

 And finally, modern tools need to give students a wide range of choices when it comes to the type 

of program she wants to create. Just as conventional languages are used across all fields for different 

purposes, CT tools are expected to have the same range of possible implementations, which requires a 

great deal of flexibility as well as a multitude of different bells and whistles. Many platforms have various 

forms of media support, such as image, music, and video animations, so that students can use data 

structures and algorithms satiate their needs and imaginations. The advent of the internet has also 

encouraged the rise of multi-user platforms where students can share their projects and activities, most 

notably those in Scratch or Khan Academy. 

 Over the past few years, the rapid growth of mobile platforms has fostered the creation of puzzle-

like games that are designed to introduce computational thinking to a younger audience. Still others such 

as Google Research have taken the concept of hands-on education to another level by creating hardware 

blocks that correspond to variables, mathematic notations, and control structures through experiments 

such as Project Bloks (Google) (Bilkstein, Sipitakiat and Goldstein). In tandem with computational 

thinking curricula, modern tools and languages are playing an indispensable role in this renaissance of 

computer science education. 
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Curricula 

 

 Teaching computational thinking to computer science majors is not too big of a challenge, 

considering how the students are already familiar with many of the concepts through their introductory 

courses in data structures and algorithms, as well as the tools and languages that are used throughout their 

classwork. After all, it is easy for those with even a small amount of computer science experience to see 

how long division, in which the numerator is constantly divided by the denominator (the numerator is 

then sequentially updated after each iteration of the division), is in fact an algorithm that students have 

been using ever since they first learned how to take a quotient of two numbers.  

It is the non-computing students that struggle to grasp computational thinking, not just because 

the terms and concepts are rather alien, but also because most schools today do not have enough adequate 

human capital and structured curricula to introduce computer science, much less computational thinking. 

While the concepts themselves are not inherently difficult to understand, it takes a certain amount of time 

for non-computing students to see how simple algorithms like long division or Fibonacci sequences are 

not only shared with concepts in computer science, but in fact derive from its very foundations. 

 This is where important questions that CT researchers are currently facing arise. How is 

computational thinking different from other forms of thinking, such as mathematic thinking?  At what 

point of students’ academic progress do we teach them a given concept? Is computational thinking really 

necessary for everyone, even for students who are not pursuing STEM degrees?  (Wing, Microsoft 

Research Blog) (Grover and Pea). With the rise in global recognition of the importance of CT, these are 

the questions that must be answered for CT to gain further momentum and truly become a modern 

literacy for all. 

 With regards to the difference between computational thinking and other similar forms of 

thinking, while it is true that CT has overlap with preexisting forms of thinking, such as arithmetic, it is 

unique in that it takes real-world constraints into account, just as an engineer would (Wing, 

Computational Thinking). Now that universal computation has been realized, it is important for people to 

keep in mind that as potent as they are, computers have their share of limits as well, such as their 

capabilities, computing power, and operating environment. Recent developments in computer graphics, 

simulations, and virtual reality have somewhat freed humankind from certain constraints, in that people 

are now able to build their own worlds. However, this does not mean in any way that we have also been 

freed from the constraints of natural laws and physics; rather, it grants us the ability to build systems that 

closely resemble physical conditions. Computational thinking reminds students that these constraints 

must be taken into account in their planning stages.  
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 Another question is finding the right age at which students can learn a given concept. While many 

countries have different opinions on what general computational thinking skills are and how they can be 

developed in students, the fundamental question of “How young is too young?” has yet to be answered 

definitively by researchers (Duncan and Bell, A Pilot Computer Science and Programming Course for 

Primary School Students). According to the Progression of Early Computational Thinking model, put 

forth by Seiter and Foreman, certain patterns are best suited for certain grades: students in early stages of 

elementary school could explore shape configuration, sprite interaction, and a small amount of 

animation/synchronization, while those with at least 4+ years of elementary education could start learning 

selection or controlled repetition involving variables and booleans (Seiter and Foreman) (Duncan, Bell 

and Tanimoto, Should your 8-Year-Old Learn Coding?). And while students have varying degrees of 

comprehension, there is a limit to the level of abstraction for many students in their primary stages of 

education (Werner, Campe and Denner).  

 Through trial and error that has lasted for hundreds, maybe even thousands of years, educators 

generally tend to have a good idea of when students should be taught addition, multiplication, functions, 

and calculus. However, since computer science is a much younger subject compared to its contemporary 

counterparts such as mathematics, reading, and writing, the scientific community has yet to agree on a 

structured timetable for computer science education. Fortunately, with increased computer supply in 

classrooms and the heightened global awareness on the importance of computational thinking, researchers 

in the near future will have more opportunities to arrive at an optimal conclusion.   

 One of the most important unanswered questions is on whether computational thinking is 

something that every student needs. Here, it must be noted that CT is not meant to teach students to 

become software engineers; rather, it is an effort to make the fundamental concepts of computer science 

available for all disciplines outside of computer science. Therefore, it is not just a matter of question, but 

absolutely imperative that even students who are vested in non-STEM subjects be exposed to CT. The 

widespread use of technology in the 21st century has created a rather odd phenomenon where students are 

“taught how to use software to write, but not how to write software.” (Duncan, Bell and Tanimoto, 

Should your 8-Year-Old Learn Coding?) In the interdisciplinary world that we live in nowadays, the 

boundary between different subjects is becoming weaker and more meaningless with each passing of 

time. Just as elementary education – and the notion of liberal education in many higher-level institutions – 

values well-rounded students, computational thinking will be yet another tool that students will be able to 

use, regardless of what fields and professions they end up choosing in the long run. 

To ask whether non-STEM students should also invest time in learning computational thinking 

would be to misunderstand the whole point of CT, because it is a concept that is especially important for 

non-STEM students who do not have exposure to the mathematic or engineering approaches that their 
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STEM counterparts have honed throughout their studies. In more recent decades, computer science has 

not only advanced science, but also the seemingly most irrelevant fields such as journalism, history, or 

philosophy, due to concepts like big data, automation, or artificial intelligence. As such, CT will be a key 

bridge that helps students understand the far-reaching influence that technology has on the modern world. 

 

Conclusion 

 

 Almost 40 years ago, Papert argued that children of almost any age could learn how to program 

under good conditions, plenty of time, and powerful enough computers. However, he also noted that 

providing such conditions and environment would be a notable challenge in advancing the field of 

computational thinking (Papert, Mindstorms).  

Decades have passed since his prescient vision, and many things have changed. Tech stars such 

as Mark Zuckerberg or Evan Spiegel receive the same accolades that a TV star or a Billboard musician 

would. Universal computation has helped the general population realize just how important technology – 

and its underlying building blocks – is to every aspect of this modern world, as evidenced by the rebirth 

of Silicon Valley that has well surpassed its pre-dotcom bubble days. Nontheless, the same problem that 

Papert had foreseen, back when personal computers had not even been developed yet, still continues to 

challenge the research and education communities.  

Despite the increasing importance of – and interest in – computational thinking, reality is that 

educators are having a hard time teaching these valuable concepts to students. The hacker phenomenon, 

cultural factors, and the lack of qualified teachers are just some of the many reasons why CT still has a 

long way to go. (Duncan, Bell and Tanimoto, Should your 8-Year-Old Learn Coding?). Recent 

developments in tools and curricula that foster computational thinking are taking strides to make CT a 21st 

century literacy, but they are still in their baby steps, still waiting for a breakthrough moment.   

The demand for computational thinking will only become more pronounced with time, as it is the 

very backbone of this ongoing tech boom that does not seem to be stopping any time soon. Computational 

thinking is not just the future; it is already very much an integral part of people’s everyday lives, abrupt as 

it may be. How we harness this powerful tool will decide whether this is just yet another bubble, a wasted 

opportunity, or a stepping stone to a modern renaissance that will change the way we live – or better, the 

way we think. 
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